We say is an unbiased estimator of iff
If an estimator is biased for , the amount of bias is given by
An estimator is asymptotically unbiased for if
as
Examples
Using maximum statistic as an estimator of ,
An unbiased estimator would be
is still asymptotically unbiased as
Estimating the variance of a sampling distribution:
Using only the sample mean:
You can't use 'macro parameter character #' in math mode\begin{align} S_{2}^2 & = \frac{1}{n}\sum_{i=1}^n (X_{i}-\bar{X})^2 \\ E(S_{2}^2) &= E\left( \frac{1}{n}\sum (x_{i}-\bar{x}) \right)^2 \\ & =\frac{1}{n}E\left( \sum_{i=1}^n(x_{i}-\mu + \mu -\bar{x})^2\right) \\ &= \frac{1}{n} E\left( \sum _{i=1}^n(x_{i}-\mu)^2+2(x_{i}-\mu)(\mu-\bar{x})+(\mu-\bar{x})^2 \right) \\ & =\frac{1}{n}E\left( \sum (x_{i}-\mu)^2 \right)+ \frac{1}{n}E\left( \sum 2(x_{i}-\mu)(\mu-\bar{x}) \right) + \frac{1}{n} E\left( \sum (\mu-\bar{x})^2 \right) \\ & =\frac{1}{n} n\sigma^2 + \frac{2}{n}E\left( (\mu-\bar{x})\sum (x_{i}-\mu) \right) + \frac{1}{n} n E((\mu-\bar{x})^2) \\ & =\sigma^2 + 2E((\mu-\bar{x})(\bar{x}-\mu))+ \frac{\sigma^2}{n} \\ & =\sigma^2 - 2 E((\bar{x}-\mu)^2) + \frac{\sigma^2}{n} \\ & =\sigma^2 - 2 \frac{\sigma^2}{n} + \frac{\sigma^2}{n} \\ & =\frac{n-1}{n}\sigma^2 \quad \text{(a biased estimator for } \sigma { #2} )\\ \end{align} That's why we estimate the variance with
An unbiased estimate for (not the MLE tho)
The Mean square error is why