Test of Variances

Given a random sample X1,,XnN(μ,σ2), we want to test if σ2=σ02 or not at an α significance level

i=1n(Xiμ)2/σ2χn2,i=1n(XiX)2/σ2χn12,(n1)S2/σ2χn12,

Tests for one variance

Case 1: μ is known

σ^2=(xiμ)2nχ2=nσ^2σ02=(xiμ)2σ02χn2 | H0α=P(χ2χα2,n2 or χ2χ1α2,n2)

Compute χobs2 and reject H0 if the value is too large or too small

Case 2: μ is unknown
μ^=x¯,σ¯2=s2=1n1(xix¯)2

pivot statisticχ2=(n1)σ^2σ02=(n1)S2σ02=(xix¯)2σ02χn12α=P(χ2χα2,n12 or χ2χ1α2,n12)compute χobs2, reject H0 if χobs2χα2,n12 or χobs2χ1α2,n12

Test for comparing two variances

X1,,XniidN(μ1,σ12),Y1,,YniddN(μ2,σ22)

F=S12/σ12S22/σ22Fn11,n21H0:σ12=σ22vsHa:σ1σ2H0:σ12σ22=1vsHa:σ12σ221σ^1=S12=(xix¯)n1,σ^2=S22=(yiy¯)2n21F=S12/σ12S22/σ22=S12S22Fn11,n21under H0:σ12=σ22reject H0 if Fobs>Fn11,n21,1α2 or the other way i guess