Sufficiency

If as estimator θ^(X1,,Xn) provides all information that the sample contains for estimating θ, θ^ is said to be sufficient for θ

We determine the sufficiency by determining if the conditional joint distribution of X1,,Xn given the estimator θ^ depends on the parameter θ or not

f(X1=x1,,Xn=xn|θ^)=f(X1=x1,,Xn=xn,θ^)g(θ^) pdf of θ^((θ^) is always true)=f(X1=x1,,Xn=xn)g(θ^)

If f(X1=x1,,Xn=xn|θ^) depends on θ, the sample values of x1,x2,,xn would provide additional information of θ (given θ^), so θ^ is not sufficient enough

If it is independent on θ, then (given θ^) θ does not provide any more information not already contained in θ^

Factorization Theorem

Factorize the joint into two parts to show the sufficiency of an estimator without (a lot of work)

θ^ is a sufficient estimator of the parameter θ if and only if the joint distribution/density of the random sample can be factorized as:

f(X1=x1,,Xn=xn;θ)=g(θ^,θ)h(x1,,xn)

where g(θ^,θ) depends only on θ^ and θ, and h(x1,,xn) does not depend on θ

We can use the dependence of the sample space on the parameter θ to show the sufficiency of a estimator

f(X1=x1,,Xnxn,θ)====θnI[X(n)<θ]I[0<X(1)]=g(θ^,θ)h(x1,,xn)

examples

X1,X2,X3Bernoulli(p)
p^=16(X1+2X2+3X3)

Let x1=1,x2=1,x3=0 be a realization of the sample, then p^=12

=f(X1=x1,X2=x2,X3=x3|p^)=f(X1=1,X2=1,X3=0,p^=1/2)p(p^=1/2)=P(p^=1/2|X1=1,X2=1,X3=0)P(X1=1,X2=1,X3=0)P(p^)=1/2=( 2 possible situations for p^=12)1p2(1p)P(p^=12|X1=1,X2=1,X3=0)P(X1=1,X2=1,X3=0)+P(p^=12|X1=0,X2=0,X3=1)P(X1=0,X2=0,X3=1)=p2(1p)1p2(1p)+1p(1p)2=p (not independent of p)

p^ is not sufficient for p

factorization theorem

N(μ,σ2)
X¯=1nXi

f(X1=x1,,Xn=xn;μ;σ2)=Π12πσ2e(xiμ)2/2σ2=(2πσ2)n/2e(xiμ)2/2σ2=(2πσ2)n/2e(xix¯+x¯+μ)2/2σ2=(2πσ2)n/2e((xix¯)2+2(xix¯)(x¯μ)+(x¯μ)2)/2σ2=(2πσ2)n/2e(xix¯)2/2σ2e2(x¯μ)(xix¯)/2σ2e(x¯μ)2/2σ2=(2πσ2)n/2e(xix¯)2/2σ21e(x¯μ)2/2σ2=en(x¯μ)2/2σ2(2πσ2)n/2e(xix¯)2/2σ2=g(x¯,μ)h(x1,,xn)x¯ is a sufficient estimate for μ