Neyman-Pearson lemma

Used to derive the most powerful test, by finding the optimal critical region

Concept of fixing α and then maximizing the power, instead of having α and β balancing each other out

Suppose X1,,Xniidf(x;θ). To test H0:θ=θ0vsHa:θ=θ1, let C be the critical region such that:

P(xC|H0 is true)=α

If C such that P(xC|H0 is true)=α we have that the power of C> power of C

P(xC|H0 is false)P(xC|H0 is false)

Then we say that C is the best Critical Region / most powerful test

100-101?

NP provides a method for testing two simple hypothesis, for a more general method of composite hypothesis we use the Likelihood ratio test

Examples

X1,,XnN(μ,1) To test H0:μ=μ0vsHa:μ=μ1,μ1>μ0

L0=f(x1,,xn;μ0,1)=12πe(xiμ0)2/2=(2π)n/2e(xiμ0)2/2L1=f(x1,,xn;μ1,1)=(2π)n/2e(xiμ1)2/2L0L1=(2π)n/2e(xiμ0)2/2(2π)n/2e(xiμ1)2/2=exp{12(xi22μ0xi+nμ02xi2+2μ1xinμ12)}=exp(nx¯(μ0μ1)n2(μ02μ12))now to find a region and K:L0L1=enx¯(μ0μ1)n2(μ02μ12)kst(x1,,xn)Cnx¯(μ0μ1)n2(μ02μ12)lnkx¯1n(μ0m1)[lnk+n2(μ02μ12)]=k{x¯>k,(x1,,xn)Cx¯k,(x1,,xn)Cα=P(reject H0|H0 is true),x¯N(μ0,1n)α=P(x¯k|μ=μ0)α=P(x¯μ01/nkμ01/n)k=μ0+Z1α1nThe most powerful critical region for the test is:C={(x1,,xn);x¯μ0+Z1α1n)}

When x¯ increases, it favors Ha
When x¯ decreases, it favors H0

The most powerful test at α-level of significance is

ϕ(x1,,xn)={1,if ZZ1α0,o.w.