Interval estimation for the difference between proportions

Examples

XBin(n,p1),YBin(m,p2), assume n,m25 to apply Central Limit Theorem

p^1=xn,p^2=ym,p^1p^2=xnymE(p^1p^2)=E(xnym)=np1nmp2m=p1p2Var(p^1p^2)=Var(p^1)+Var(p^2)=Var(xn)+Var(ym)=np1(1p1)n2+mp2(1p2)m2=p1(1p1)n+p2(1p2)mZ=p^1p^2E(p^1p^2)Va^r(p^1p^2)=p^1p^2(p1p2)p^1(1p^1)n+p^2(1p^2)mN(0,1) approxD=p1p2,P(DlDDu)=1αCI for D:(p^1p^2Z1α2p^1(1p^1)n+p^2(1p^2)m,p^1p^2+Z1α2p^1(1p^1)n+p^2(1p^2)m)