Interval estimation for the difference between means

Examples

X1,..,Xn1N(μX,σX2),Y1,,Yn2N(μy,σY2)
If σX2,σy2 are known:

μ^X=x¯,μ^Y=y¯x¯N(μx,σx2n1),y¯N(μY,σY2n2)x¯y¯N(μX,μY,σX2n1+σY2n2),d=μXμYZ=x¯y¯DσX2n1+σY2n2N(0,1)P(DlDDu)=1αP(x¯y¯DuσX2n1+σY2n2x¯y¯DσX2n1+σY2n2x¯y¯DlσX2n1+σY2n2)=1αCI for D=μXμY:()

σX2,σY2 are unknown:

σ^X2=SX2=i=1n1(XiX¯)2n1σ^y2=Sy2=i=1n2(YiY^)2n21 for n130,n230 replace σ2s by S2s CI for D=μxμy:(x¯y¯Zα2Sx2n1+SY2n2,x¯y¯+Zα2Sx2n1+SY2n2)for small n1,n2<30, we pool information from the 2 samplesσ^pooled2=Spooled2=n1(xix¯)2+n2(yiy¯)2n1+n22=(n11)Sx2+(n21)Sy2n1+n22t=x¯y¯DVa^r(x¯y¯)=x¯y¯Dσ^X2n1+σ^Y2n2=x¯y¯DSpooled2n1+Spooled2n2=x¯y¯DSpooled1n1+1n2tn1+n22CI for D=μxμy:(x¯y¯t1α2,n1+n22Spooled2(1n1+1n2),x¯y¯+t1α2,n1+n22Spooled2(1n1+1n2))

Test of Means