Interval estimation for mean

Let (θl,θu) be a random interval. With an appropriate probability 1α (confidence coefficient), we want to find values of θl and θu such that

P(θlθθu)=1α

We refer to (θl,θu) as a 100(1α)% confidence interval (CI) for θ

Interpretation: on repeating sampling, there will be k CI's for θ, and θ will be covered by these CI's about 100(1α)% of the time

To determine the confidence limits θl,θu, we use a statistic with a known distribution/parameters (Pivot Statistic)

If x¯ is the sample mean of a random sample from N(μ,σ2) and σ2 is known, then

CI=(x¯Z1α/2,x¯+Z1α/2)wrong

If θ is a location parameter, then the interval estimate usually involves a difference

The MLE or a sufficient statistic is often a good place to start for finding θl and θu

Examples

Knowing σ2 from a normal distribution, but wanting to estimate the μ:

μ^=x¯=xinZ=xμσ/nN(0,1), (a pivot with known params)P(μlμμu)=1αP(x¯μuσ/nx¯μσ/nx¯μlσ/n)=1αP(Z1α2)μ^l=x¯1.96σnμ^u=x¯+1.96σn

σ2 unknown

μ^=x¯,σ2=s2=1n1(xix¯)2t=x¯μs/ntn1t-statistic is a pivot statisticP(μlμμu)=1αP(x¯μs/nx¯μs/nx¯μs/n)=1αCI=(x¯t1α/2sn,x¯+t1α/2sn)

By CLT:

Z=x¯μVar(x¯)=x¯μσ/n,ZN(0,1) approx for big n25 ExampleX1,,XnBin(N,p),CI for μ and p:μ=E(X)=np,Var(X)=σ2=np(1p)μ^=x¯=xin,p^=μ^N=x¯N,E(μ^)=E(x¯)=μVar(μ^)=Var(X¯)=1n2nVar(X)=σ2n=Np(1p)nE(p^)=E(μ^N)=1NNp=pVar(p^)=Var(X¯N)=1N2nVar(X)n2=1nN2Np(1p)=p(1p)nNP(μlμμu)=1αP(x¯μuNp(1p)nx¯μNp(1p)nx¯μlNp(1p)n)=1αP(Z1α2N(0,1)Z1α2)=1αCI for μ=E(X) is (X¯Z1α2Np^(1p^)n,X¯+Z1α2Np^(1p^)n)