Consistency

θ^ is a consistent estimator of the parameter θ if and only if ϵ>0

limnP(|θ^θ|<ϵ)=1

The sample mean X¯ is a consistent estimate of the population mean, as Var(X¯)=σ2n. Applying Chebyshev's Theorem:

P(|X¯μ|<ϵ)1σ2nϵ21 as n

If θ^ is an unbiased estimator of the parameter θ and the Var(θ^)0 as n, then θ^ is a consistent estimator of θ

Consistent tests will have their power converge to 1 as n

Examples

The sample variance S2=1n1i=1n(XiX¯)2 is a consistent estimator of the population variance σ2

\begin{align} \frac{(n-1)S^2}{\sigma^2} & \sim \huge\chi_{n-1}^2 \\ E\left( \frac{(n-1)S^2}{\sigma^2} \right) & =n-1 \\ E(S^2) & =\sigma^2 \\ Var\left( \frac{(n-1)S^2}{\sigma^2} \right)& = 2(n-1) \\ Var(S { #2} ) & =\frac{2\sigma^4}{n-1}\to 0 \text{ as } n\to \infty \end{align}

Looking at the minimum statistic X(1) for a double exponential distribution

f(x,δ)=e(xλ),xδFX(x)=f(x,δ)=δxe(tδ)dt=1xe(tδ)=1exδ,x>δ1FX(x)=exδfX(1)=n[e(xδ)]n1e(xδ)=nen(xδ)E(X(1))=δxnen(xδ)dx=0(y+δ)neny=0ynenydy+δ0neny=E(Y)+δ=1n+δδ

E(X(1))=1n+δ is asymptotically unbiased
To prove that it is a consistent estimator for δ

limnP(|X(1)δ|<ϵ)=P(ϵX(1)δϵ)=P(δϵX(1)δ+ϵ)=P(δX(1)δ+ϵ)=δδ+ϵnen(xδ)dx=1enϵ1 as n