Moments of Linear Combinations

If we have more than two random variables, X1,X2,,Xn, for constants a:

E(i=1naiXi)=i=1naiE(Xi)

E(X+4Y+2Z)=E(X)+4E(Y)+2E(Z)

var(i=1naiXi)=i=1nai2var(Xi)+2i=1n1j=i+1naiajcov(XiXj)

Var(X+4Y+2Z)=Var(X)+16Var(Y)+4Var(Y)+2(1)(4)cov(X,Y)+2(1)(2)cov(X,Z)+2(4)(2)cov(Y,Z)

Covariances of Linear Combinations

If

Y1=i=1naiXiand Y2=i=1nbiXi

then

cov(Y1,Y2)=i=1naibiVar(Xi)+i=1n1j=i+1n(aibj+ajbi)cov(Xi,Xj)cov(X+4Y+2Z,3XYZ)=(1)(3)Var(X)+4(1)Var(Y)+2(1)Var(Z)++[(1)(1)cov(X,Y)+4(3)cov(X,Y)]++[(1)(1)cov(X,Y)+(2)(3)cov(X,Z)]++[4(1)cov(Y,Z)+2(1)cov(Y,Z)]