Moment Generating Functions

MX(t)=E(etX)=xetxf(x)discreteMX(t)=E(etX)=etxf(x)dxcontinuous

The function can be used to find an specific moment:

μr=E(Xr)=drMX(t)dtr|t=0

as we want to evaluate at t=0, we handle the function considering t to be a very small value, t(δ,δ)

Using the series expansion for etx we arrive at a form for the function that resembles a Taylor Series

m(t)=1+tμ1+t22!μ2+t33!μ3+

Taking the derivative removes the unwanted terms from the left, evaluating at t=0 eliminates everything from the right

If a and b are constants:

1.MX+a(t)=E[e(X+a)t]=eatMX(t)2.MbX(t)=E[ebXt]=MX(bt)3.MX+ab(t)=E[e(x+ab)t]=E[eabt]MX(tb)

The problem with MGFs is that they don't always exist

φX(t)=E(eitX),i=1

always exists for any distribution

Properties

If X and Y have the same MGF they must have the same pdf

  1. Suppose Xf(x), if MX(t) exists then MX(t) and f(x) have a one-to-one correspondence

  2. Suppose X and Y are two random variables such that

MX(t)MY(t) thenfX(x)fY(y)x,y

If Y=aX+b then

MY(t)=ebtMX(at)

If X and Y are independent then

MX+Y(t)=MX(t)MY(t)

Binomial Distribution

Xbinom(n,p)

MX(t)=E(ext)=extf(x)=x=0next(nx)px(1p)nx=x=0n(nx)(etp)x(1p)nx(binomial expansion)=[etp+(1p)]n=[1+p(et1)]n

Factorial

FMX(t)=E(tX)=xtxf(x)

rth factorial moment

μ(r)=E[X(X1)(X2)(Xr+1)]=drdtrFMX(t)|t=1

Poisson Distribution

MX(t)=E(ext)=x=0exteλλxx!eetλ is a constant=eλeetλx=0eetλ(etλ)xx!=eλeetλ1(pmf of poisson)=eλ(et1)

Gamma Distribution

MX(t)=E(etX)=etx1βαΓ(α)xα1ex/βdx=1βαΓ(α)0etxx/βxα1dx|t=0=1βαΓ(α)0ex(1/βt)xα1dx(u=x(1βt))=1βαΓ(α)0eu(u1βt)α1du1βt(x=u1βt,dx=du(1βt))=1βαΓ(α)(11βt)α0euuα1du=(1βt)α1βαΓ(α)Γ(α)=((1βt)β)αMX(t)=(1tβ)α

Exponential Distribution

MX(t)=E(etX)=0etx1λex/λdx=1λ0e(1/λt)xdx=1λ11λt0(1λt)e(1/λt)xdx=11λt1(pdf of exp(0))