Gamma Distribution

Probability Density Function

A random variable X has a gamma distribution XGamma(α,β) if and only if it has the pdf

f(x;α,β)=1βαΓ(α)xα1ex/β for x>0

where α>0 and B>0 and Γ(α) is the Gamma function

  1. f(x)0,x
f(x)dx=01βαΓ(α)xα1ex/βdx=1βαΓ(α)0xα1ex/βdx(y=xβ)=1βαΓ(α)0(βy)α1eyβdy(dx=βdy)=1βαΓ(α)βα0yα1eydy=1Γ(α)Γ(α)=1

Mean

μ=E(X)=0x1βαΓ(α)xα1ex/βdx=1βαΓ(α)0xα+11ex/β=1βαΓ(α)βα+1Γ(α+1)01βα+1Γ(α+1)xα+11ex/βdx=βΓ(α+1)Γ(α)1(PDF of Gamma(α+1,β))=βαΓ(α)Γ(α)μ=βα

Second moment

E(X2)=0x21βαΓ(α)xα1ex/βdx=d2dt2MX(t)=ddtαβ(1tβ)α1=αβ(α1)(1tβ)α2(β)|t=0=β2α((α+1))(10)α2=β2α(α+1)

Variance

Var(X)=E(X2)[E(X)]2=β2α(α+1)(αβ)2=β2(α(α+1)α2)=β2(α(α+1α))=β2(α(1))Var(X)=β2α

Exponential Distribution is a special case of the gamma distribution when α=1

The Chi-Squared Distribution is another special case of the gamma distribution with α=v2 and β=2

Moments

The rth moment of a Gamma(α,β) distribution is given by

E(Xr)=βrΓ(α+r)Γ(α)