Covariance

The covariance of X and Y is the Product of Moments about the mean

σXY=cov(X,Y)=E((XμX)(YμY))=E(XY)E(X)μYμXE(Y)+μXμY=E(XY)μXμY=E(XY)E(X)E(Y)

Which is useful for calculating the variance of independent variables

Var(X+Y)=E[(X+Y)2][E(X+Y)]2=E(X2)+2E(XY)+E(Y2)([E(X)]2+2E(XY)+[E(Y)]2)=Var(X)+Var(Y)+2E(XY)2E(X)E(Y)Var(X+Y)=Var(X)+Var(Y)+2cov(X,Y)

Covariance measures the relation between the variables