Conditional probability

P(A| condition) = Probability of A given condition

Bayes Theorem

P(A|B)=P(B|A)P(A)P(B)=P(AB)P(B)

Extended Bayes' Theorem (applying rule of total probability)

P(Bj|A)=P(A|Bj)P(Bj)i=1kP(A|Bi)P(Bi)

P(AB)=P(A)P(B|A)
P(A|B)=1P(A¯|B)
P(AB)=P(A)P(B|A)=P(B)P(A|B)
P(AB)=P(AB) (notation)
P(ABC)=P(A)P(B|A)P(C|AB) =P(AB)P(C|AB)

If A1,A2,A3,An are in a sample space such that P(A1)0,P(A1A2)0,P(A1A2An1)0 then

P(AB)=P(A)P(B|A)=P(B)P(A|B)
P(A)=P(A|B)+P(A|B¯)
P(A)=P(A|B)P(B)+P(A|C)P(C)+P(A|D)P(D)

If A and B are independent (A and B) and (A and B) are also independent

P(A1A2Ak)=P(A1)P(A2)P(Ak)A1,A2,Ak are independent

Pairwise Independency

Sensitivity

Specificity