Beta Distribution

A distribution similar to the binomial, but where the probability of success p is not a constant

Probability Distribution Function

A random variable X has a beta distribution if and only if it has the pdf

f(x;α,β)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1

for 0<x<1,α>0,β>0

Beta is the continuous Binomial Distribution, where the combination is replaced by the continuous factorials in the Gamma function

(nx)=n!(nx)!x!=(nx+x)!(nx)!x!=01f(x;α,β)=

Mean

E(Xr)=01xrΓ(α+β)Γ(α)Γ(β)xα1(1x)β1dx=Γ(α+β)Γ(α)Γ(β)Γ(r+α)Γ(β)Γ(r+α+β)01Γ(r+α+β)Γ(r+α)Γ(β)xr+α1(1x)β1dx=Γ(α+β)Γ(α)Γ(β)Γ(r+α)Γ(β)Γ(r+α+β)1=Γ(α+β)Γ(α+β+r)Γ(r+α)Γ(α)=(α+r1)(α+r2)α(α+β+r1)(α+β+r2)(α+β),r=1,2,3

Uniform Distribution is a special case of the beta distribution with α=1 and β=1

Xunif(0,1)Beta(1,1)f(x)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1=Γ(2)Γ(1)Γ(1)x0(1x)0=1,0<x<1