Hypergeometric Distribution

Similar to the Binomial Distribution but samples without replacement

Probability Distribution Function

A random variable X has a hypergeometric distribution X hypergeometric(n,N,M) if and only if its probability distribution is

P(X=x)=f(x;n,N,M)=(Mx)(NMnx)(Nn)

for x=0,1,2,,n, xn,xM and nxNM

E(X)=x=0nx(Mx)(NMnx)(Nn)=1(Nn)x=0nxM!x!(Mx)!(NMnx)=1(Nn)x=1nxM(M1)!x(x1)!(M1(x1))!(NMnx)=M(Nn)x=0n1(M1)!x!(M1x)!(NMn(x+1))=M(Nn)x=0n1(M1x)(NMn1x)=M(Nn)(N1n1)vandermondesE(X)=nMN

Counting Theorems#Vandermonde's (Zhu Shijie's) Identity

σ2=nM(NM)(Nn)N2(N1)

examples

P(X=2)=(42)(61)(103)=0.3 P(X=2)=(32)420.61=0.288