Binomial Distribution

Interpretation

A random variable Y=iXi follows a binomial distribution, counting the number of successes of the random variable X that follows the Bernoulli Distribution

Probability Distribution Function

A random variable X has a binomial distribution, denoted by XBin(n,p) if and only if it has the probability distribution function

f(x)=P(X=x)=(nx)px(1p)nx

for 0xn, with:

  1. f(x)0
  2. xf(x)=1

where n represents the number of total trials, p the probability of "success" and x the number of "successes"

Mean

E(X)=xxf(x)=x=0nx(nx)px(1p)nx=x=1nxn!x!(nx)!px(1p)nx=x=1nn(n1)!(x1)!(nx)!ppx1(1p)nx=npx=1n(n1)!(x1)!(n1(x1))!px1(1p)n1(x1)=npx=1nBin(n1,p)μ=np1=np

Variance

Var(X)=np(1p)

If X represents the number of successes in n trials, then Y=Xn represents the Sample Proportion of successes

Using Chebyshev's Theorem we get the law of large numbers:

limnP(|yp|c)=1

Moment-generating function

MX(t)=[1+p(et1)]n

examples