Discrete
F ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∑ s ≤ x ∑ t ≤ y f ( s , t ) for x , y ∈ R Marginals
f X ( x ) = P ( x = x ) = ∑ y f ( x , y ) , f Y ( y ) = P ( Y = y ) = ∑ x f ( x , y )
For n discrete random variables X 1 , X 2 , … , X n with a joint probability distribution f ( x 1 , x 2 , … , x n ) and marginals distributions f X i ( x i ) :
f X ( x 1 , x 2 , … x n ) = f X 1 ( x 1 ) ⋅ f X 2 ( x 2 ) … f X n ( x n ) ∀ ( x 1 , x 2 , … , x n ) if and only if the n random variables are independent
uniform
f ( x ) = 1 k , μ = n + 1 2 , σ 2 = n 2 − 1 12 Bernoulli
f ( x ) = p x ( 1 − p ) 1 − x , μ = p , σ 2 = p ( 1 − p ) binomial
f ( x ) = ( n x ) p x ( 1 − p ) n − x , μ = n p , σ 2 = n p ( 1 − p ) , M X ( t ) = [ 1 + p ( e t − 1 ) ] n negative binomial (geometric when k =1)
f ( x ; k , p ) = ( x − 1 k − 1 ) p k ( 1 − p ) x − k , μ = k p , σ 2 = k p ( 1 p − 1 ) hypergeometric (sampling without replacement)
f ( x ; n , N , M ) = ( M x ) ( N − M n − x ) ( N n ) , μ = n M N , σ 2 = n M ( N − M ) ( N − n ) N 2 ( N − 1 ) poisson
You can't use 'macro parameter character #' in math mode f(x;\lambda)=\frac{\lambda { #xe } ^{-\lambda}}{x!}, \mu =\sigma^2=\lambda, \quad M_{X}(t)=e^{\lambda(e^t-1)} f(x;\lambda)=\frac{\lambda { #xe } ^{-\lambda}}{x!}, \mu =\sigma^2=\lambda, \quad M_{X}(t)=e^{\lambda(e^t-1)} Continuous
Joint Cumulative Density
F ( X , Y ) = P ( X ≤ x , Y ≤ y ) = ∫ − ∞ y ∫ − ∞ x f ( s , t ) d s d t x , y ∈ ( − ∞ , ∞ ) f ( x , y ) = ∂ 2 ∂ x ∂ y F ( x , y ) marginals f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y a n d f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x For n continuous random variables X 1 , X 2 , … , X n with a joint probability densities f ( x 1 , x 2 , … , x n ) and marginals densities f X i ( x i ) :
f X ( x 1 , x 2 , … x n ) = f X 1 ( x 1 ) ⋅ f X 2 ( x 2 ) … f X n ( x n ) ∀ ( x 1 , x 2 , … , x n ) if and only if the n random variables are independent
uniform
f ( x ; α , β ) = 1 β − α , μ = α + β 2 , σ 2 = 1 12 ( α − β ) 2 gamma function (continuous factorial)
Γ ( α ) = ∫ 0 ∞ y α − 1 e − y d y , Γ ( 1 2 ) = π Gamma Distribution
f ( x ; α , β ) = 1 β α Γ ( α ) x α − 1 e − x / β , μ = β α , σ 2 = β 2 α Exponential Distribution is a gamma distribution when α = 1
The Chi-Squared Distribution is a gamma distribution with α = v 2 and β = 2 , v = df
beta distribution
f ( x ; α , β ) = Γ ( α + β ) Γ ( α ) Γ ( β ) x α − 1 ( 1 − x ) β − 1 , μ = α α + β , σ 2 = α β ( α + β ) 2 ( α + β + 1 ) normal distribution
f ( x ; μ , σ 2 ) = 1 2 π σ 2 e − ( x − μ ) 2 / 2 σ 2 , M X ( t ) = e μ t + 1 2 σ 2 t 2 If X ∼ B i n ( n , p ) then the moment-generating function of
Z = X − n p n p ( 1 − p ) = X − μ σ P ( A | B ) = P ( B | A ) P ( A ) P ( B ) = P ( A ∩ B ) P ( B ) Conditional
f X | Y ( x | y ) = P ( A | B ) = P ( A ∩ B ) P ( B ) = f ( x , y ) f Y ( y ) E [ g ( X ) | Y = y ] = ∑ x g ( x ) f X | Y ( x | y ) E [ g ( X ) | Y = y ] = ∫ − ∞ ∞ g ( x ) f X | Y ( x | y ) V a r ( X | Y = y ) = E ( X 2 | Y = y ) − [ E ( X | Y = y ) ] 2 Expectation
E [ g ( X , Y ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x , y ) ⋅ f X , Y ( x , y ) d x E [ g ( X , Y ) ] = ∑ x ∑ y g ( x , y ) ⋅ f X , Y ( x , y ) properties
E [ ∑ i = 1 n c i g i ( X ) ] = ∑ i = 1 n c i E [ g i ( x ) ] E [ ( a X + b ) n ] = ∑ i = 0 n ( n i ) a n − i b i E ( X n − 1 ) E [ a X + b ] = a E [ X ] + b var ( a X + b ) = a 2 [ E ( X 2 ) − [ E ( X ) ] 2 ] = a 2 σ 2 = a 2 var ( X ) Moments
μ r ′ = E ( X r ) = ∑ x x r f ( x ) ( d i s c r e t e ) μ r ′ = E ( X r ) = ∫ − ∞ ∞ x r f ( x ) d x ( c o n t i n u o u s ) Central moments
μ r = E [ ( X − μ ) r ] = ∑ x ( x − μ ) r ⋅ f ( x ) ( d i s c r e t e ) μ r = E [ ( X − μ ) r ] = ∫ − ∞ ∞ ( x − μ ) r ⋅ f ( x ) d x ( c o n t i n u o u s ) var ( X ) = σ 2 = μ 2 = E [ ( X − μ ) 2 ] = E ( X 2 ) − [ E ( X ) ] 2 Moment generating functions are a bijection between functions
M X ( t ) = E ( e t X ) = ∑ x e t x f ( x ) discrete M X ( t ) = E ( e t X ) = ∫ − ∞ ∞ e t x f ( x ) d x continuous μ r ′ = E ( X r ) = d r M X ( t ) d t r | t = 0 1. M X + a ( t ) = E [ e ( X + a ) t ] = e a t ⋅ M X ( t ) 2. M b X ( t ) = E [ e b X t ] = M X ( b t ) 3. M X + a b ( t ) = E [ e ( x + a b ) t ] = E [ e a b t ] M X ( t b ) Product of Moments
μ r , s ′ = ∑ x ∑ y x r y s ⋅ f X , Y ( x , y ) = E [ X r Y s ] μ r , s ′ = ∫ − ∞ ∞ ∫ − ∞ ∞ x r y s ⋅ f X , Y ( x , y ) d x d y P ( | X − μ | < k σ ) ≥ 1 − 1 k 2 , σ ≠ 0 The covariance of X and Y is the Product of Moments about the mean, expectations are inversely related when covariance is negative, and directly related when it is positive
μ 1 , 1 = σ X Y = c o v ( X , Y ) = E ( ( X − μ X ) 1 ( Y − μ Y ) 1 ) = E ( X Y ) − E ( X ) E ( Y ) If X and Y are independent :
E ( X Y ) = E ( X ) E ( Y ) , c o v ( X , Y ) = σ X Y = 0
If A 1 , A 2 , A 3 , … A n are in a sample space such that P ( A 1 ) ≠ 0 , P ( A 1 A 2 ) ≠ 0 , … P ( A 1 A 2 … A n − 1 ) ≠ 0 then P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 | A 1 ) P ( A 3 | A 1 A 2 ) … P ( A n | A 1 A 2 … A n − 1 )
If A and B are independent → ( A and B ― ) and ( A ― and B ) are also independent
If the sample space S can be partitioned into events B 1 , B 2 , … B k and P ( B k ) ≠ 0 ∀ i = 1 , 2 … k
Then for any event A in S P ( A ) = ∑ i = 1 k P ( A | B i ) P ( B i )
Independence
If X and Y are independent:
f ( x , y ) = P ( X = x , Y = y ) = P ( X = x ) P ( Y = y ) f ( x , y ) = f X ( x ) f Y ( y ) ∀ (x,y) F ( x , y ) = P ( X ≤ x , Y ≤ y ) = P ( X ≤ x ) P ( Y ≤ y ) = F X ( x ) F Y ( y ) ∀ (x,y) The cdfs can be used instead to determine the dependency of the variables
f ( x , y ) = f X ( x ) f Y ( y ) F ( x , y ) = F X ( x ) F Y ( y )