Tangent Planes

A collection of all possible tangent lines to the surface of a multivariable function at a point (a,b,f(a,b))

f(x,y,z)(a,b,c)<xa,yb,zc>

The normal vector n^=(A,B,C) is orthogonal ???

<xa,yb,zf(a,b)><A,B,C> =0A(xa)+B(yb)+C(zf(a,b))=0

So the equation of the tangent plane must be

z=f(a,b)AC(xa)BC(yb),  c0z=f(a,b)+fx(a,b)(xa)+fy(a,b)(yb)

Taylor Polynomials

Taking the taylor expansion of a multivariable function

f(x,y)=f(a,b)+fx(a,b)1!(xa)+fy(a,b)1!(yb)++fxx(a,b)2!(xa)2+22!fxy(a,b)(xa)(yb)+fyy(a,b)2!(yb)2+

Linear approximation of f at (a,b) is the tangent plane approximation/taylor expansion up to only one derivative

La,b(x~)=T1,a~(x~)=f(a,b)+fx(a,b)(xa)+fy(a,b)(yb)